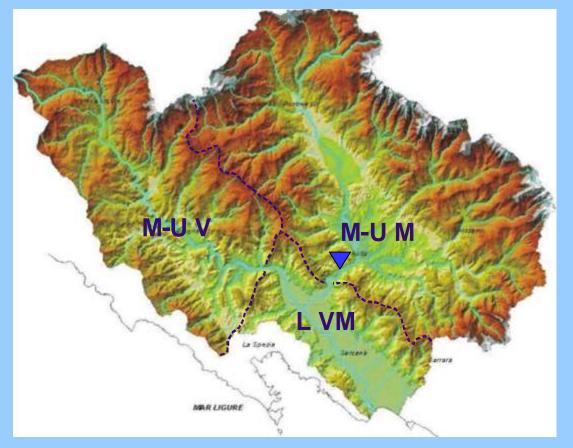


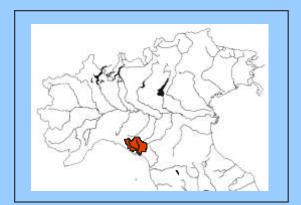
Great European Dynamic Rivers and the «Free Space for Rivers » concept Moulins, France 22-23 October 2009

CONSIDERATION OF LATERAL MOBILITY FOR RIVER MANAGEMENT IN ITALY

<u>Massimo Rinaldi</u>

Dipartimento di Ingegneria Civile e Ambientale, Università di Firenze




PRESENTATION OUTLINE

1. The Magra River project

2. Lateral mobility and Water Framework Directive: a **new methodology for hydromorphological assessment and classification** of Italian rivers

MAGRA RIVER: GENERAL SETTING

M-U V: middle – upper Vara M-U M: middle – upper Magra L VM: lower Vara - Magra ▼ : gauging station Total catchment area: 1698.5 km² Vara catchment area: 572 km² Basin relief: 1639 m Mean annual precipitation: 1707 mm Magra R. length: 69.5 km Vara R. length: 65 km q_{med} : 40.8 m³/s Q_2 : 622.7 m³/s

THE MAGRA RIVER PROJECT

<u>PROBLEMS:</u> severe incision, bedload deficit and associated environmental problems

<u>AIMS:</u> to define a scientific strategy design for promoting sustainable management of sediment and channel mobility

A second second

Canada H

 Canada H

City of the second second second

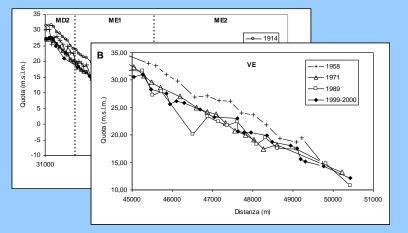
Theorem is the owner of the last

RINALDI M., SIMONCINI C., PIEGAY H. (2009) -Scientific strategy design for promoting a sustainable sediment management: the case of the Magra River (Central – Northern Italy). River Research and Applications, 25, 607-625.

1. Channel changes and trends of adjustment

Historical maps

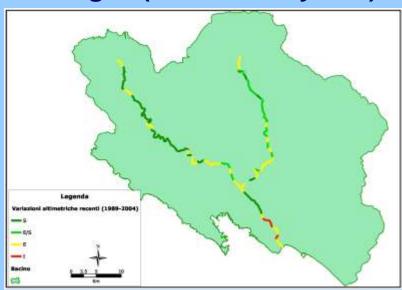
Old postcards

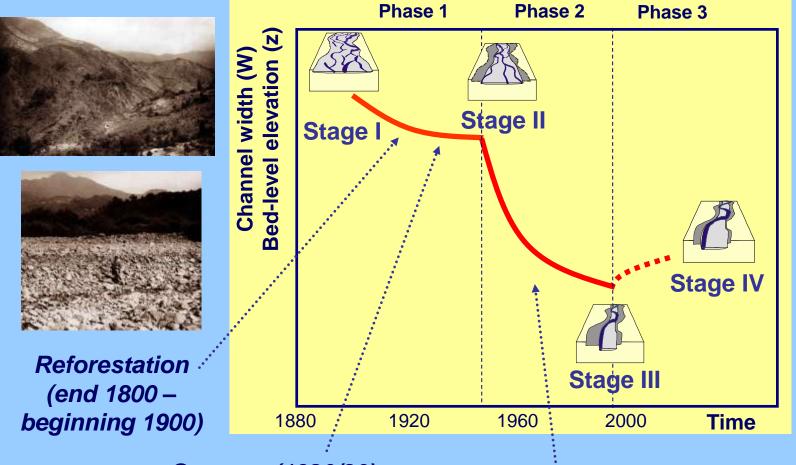


Multi-temporal series of aerial photos

1. Channel changes and trends of adjustment

Longitudinal profiles


Bed-level changes over the last 100 years



Field surveys

Present trends of bed-level changes (last 10 – 15 years)

1. Channel changes and trends of adjustment

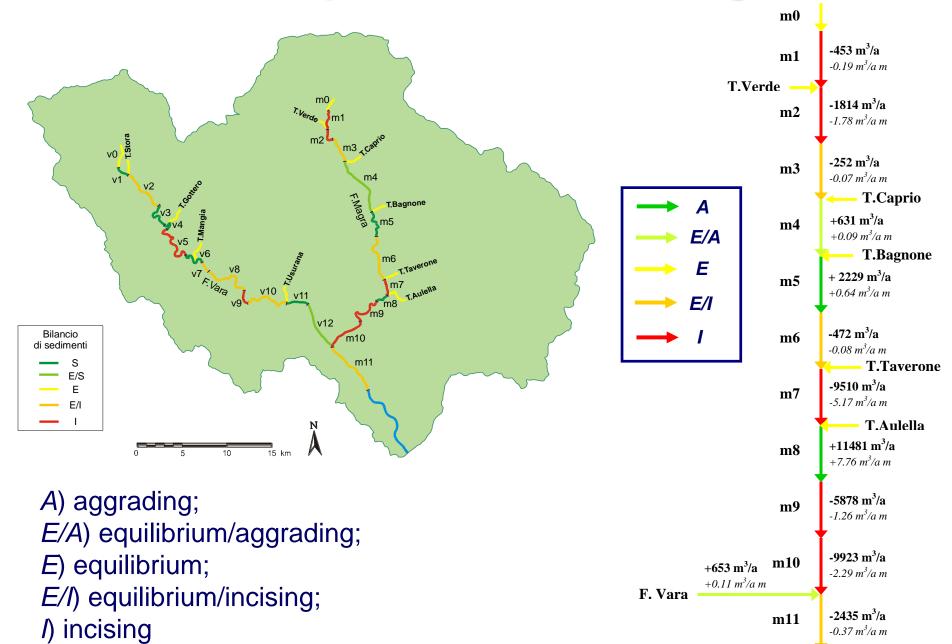
Sediment mining (1950/80)

2. Identification of areas for potential sediment recharge

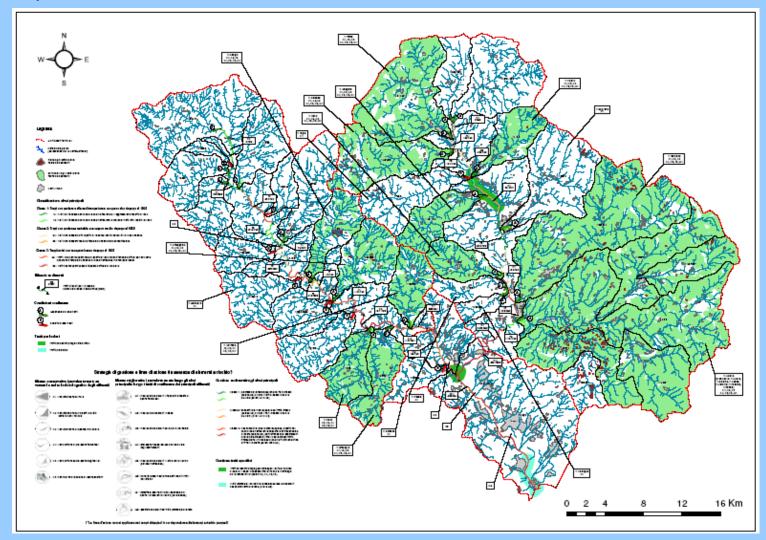
Semi-quantitative approach

- Two types of sediment sources were considered:
- (A) sediment recharge by landslides
- (B) direct sediment recharge in the hydrographic

network



Landslides selected as suitable for potential sediment recharge


Sub-catchment selected as suitable for potential direct sediment recharge

3. Sediment transport and sediment budget

Map of strategies for sediment management

All the aspects previously analysed have been synthesised in a 'map of strategies for sediment management' (scale 1:60.000)

Map of strategies for sediment management

Actions and/or measures at catchment and river scale

Actions to preserve natural sediment supply (mainly hillslopes and tributaries)

C2: do not stabilise hillslopes in direct connection with the hydrographic network

C3: do not stabilise eroding streambanks

C4: do not build new transversal hydraulic structures

C5: do not build new longitudinal hydraulic structures

C6: avoid maintenance of existing hydraulic structures

Actions to promote sediment budget recovery (main alluvial channels)

M1: mobilise sediments trapped upstream of weirs

M2: mobilise instream sediments

M3: move sediments accumulated on the floodplain into the channel

M4: carry out a bedload release downstream of dams

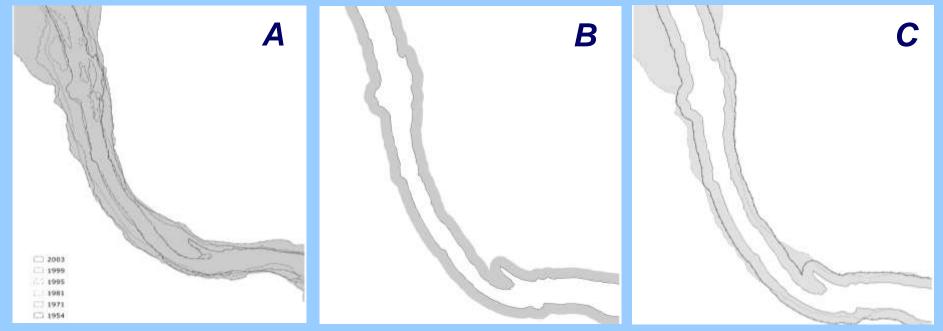
M5: mobilise sediments in situations of hydraulic risk (for aggradation)

M6: introduce sediments deriving from other reaches

M7: introduce sediments in situations of risk (for local scour)

River classification and management actions

(a) bed-level changes at the scale of 100 years (from 1900 to 2004) (stable, limited incision, moderate incision, intense incision, very intense incision)


(b) Present trend of bed-level adjustments (aggrading, equilibrium/aggrading, equilibrium, incising)

(c) Bed-level recovery compared to the situation of 1950 (recovery > 100 %, from 80 to 100 %, from 50 to 80 %, from 0 to 50 %, < 0 %)

(d) Hydraulic sediment budget (aggrading, equilibrium/aggrading, equilibrium, equilibrium/incising, incising)

Symbol	Classes and associated channel bed conditions	Management actions
	<i>Class 1</i> : Reaches with tendency to aggradation and high bed recovery compared to 1950	Promotingsedimentmobilizationwithin the same reach (action M2) or tothe closest downstream reach in class 3(actions M1 or M5)
	<i>Class</i> 2: Reaches with variable tendencies and medium recovery	Allowing sediment mobilization within the same reach (action $M2$) or to the closest downstream reach in class 3 (actions $M1$ or $M5$)
	<i>Class 3</i> : Incised reaches with low bed recovery compared to 1950	Not allowing any sediment mobilization, except in case of local aggradation upstream of weirs (action <i>M5</i>), and promoting introduction of sediments deriving from upstream reaches in class 1 or 2 (actions <i>M6</i> or <i>M7</i>)

The Functional Mobility Corridor

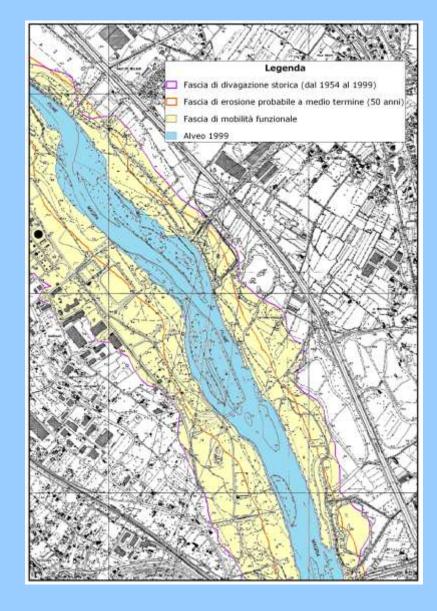
A) Corridor of historical channel mobility, corresponding to the extent of the channel mobility during the last 50 years; B) Erodible corridor in the next 50 years, based on present mean rates of bank erosion; C) Erodible corridor or 'functional mobility corridor': external limit of the two previous areas.

The Functional Mobility Corridor

- Restriction to the **previous 50 years** and **next 50 years** for the following reasons:
- (a) beginning of the 1900: different channel patterns and watershed conditions;
- (b) such a wide streamway would have **doubtful practical application**, given that part of the alluvial plain is today urbanised
- (c) **future 50 years** has been selected because they correspond with the life span of the management project

The Functional Mobility Corridor Reaches where to encourage the application of the functional mobility corridor (FMC) were identified as reaches with wider valley floor and natural tendency to lateral mobility, in order to promote additional S.Margherita sediment supply dam

^{Ligurian} Sea


15 km

by eroding banks.

The Functional Mobility Corridor

GIS analysis and mapping

'Actual functional mobility corridor': on-going process of participatory management led by the Basin Authority of Magra River, taking into account justified local constraints (e.g. main infrastructures, protection of drinking water wells, etc.) and then developing specific landuse policies to permit erosion to occur

A new methodology for hydromorphological assessment and classification of Italian rivers

Massimo RINALDI¹, Nicola SURIAN², Francesco COMITI³, Martina BUSSETTINI⁴

¹ Dipartimento di Ingegneria Civile e Ambientale, Università di Firenze
 ² Dipartimento di Geografia, Università di Padova
 ³ Facoltà di Scienze e Tecnologie, Università di Bolzano
 ⁴ Istituto Superiore per la Protezione e la Ricerca Ambientale, Roma

ISPRA, Istituto Superiore per la Protezione e la Ricerca Ambientale Dipartimento di Ingegneria Civile e Ambientale, Università di Firenze

"Free space for rivers" and WFD

CEN (Guidance standard for assessing the hydromorphological features of rivers): introduces "the freedom for a river channel to migrate across a floodplain"

This requires a **consideration for the processes of lateral mobility** (i.e. bank erosion and potential lateral movements as positive attributes* of rivers)

* Florsheim J.L., Mount J.F. & Chin A. (2008) – *Bank erosion* as a desirable attribute of rivers. BioScience, 58 (6), 519-529.

Existing hydromorphological methods Existing methods of habitat survey (AusRivAS, US EPA, RHS, Caravaggio, etc.) not designed for the WFD aims. Main limits:

1) **form-based approach** (no considerations on geomorphic processes and trends of adjustment);

2) **"reference conditions" in terms of forms** (presence and number) of **reaches in present conditions** (although already altered);

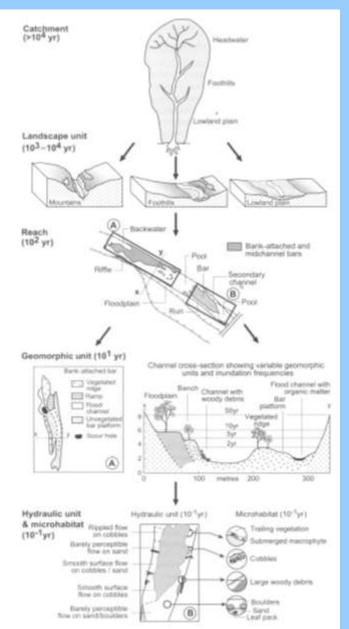
3) not suitable for **analysis of pressures and impacts** and for the design of restoration actions etc.

Panaro River (Northern Italy)

Terrace

previous channel bed

to be - It is


Objective

To develop a 'process-oriented' system for hydromorphological assessment and classification

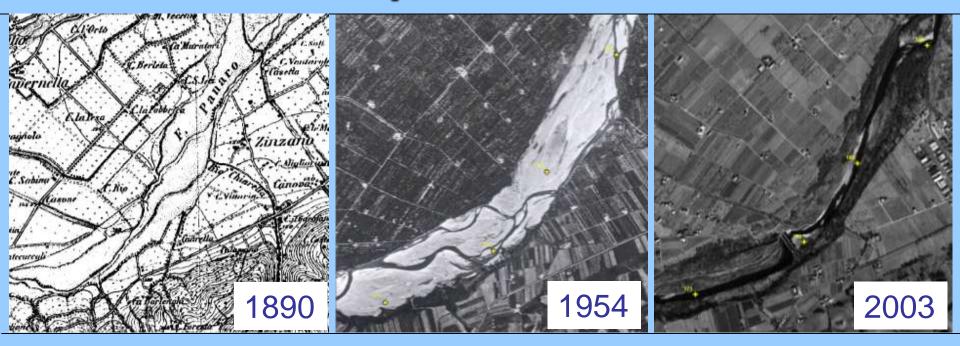
Approaches and methods

(1) Remote sensing and GIS analysis(2) Stream reconnaissance field survey

Spatial scales

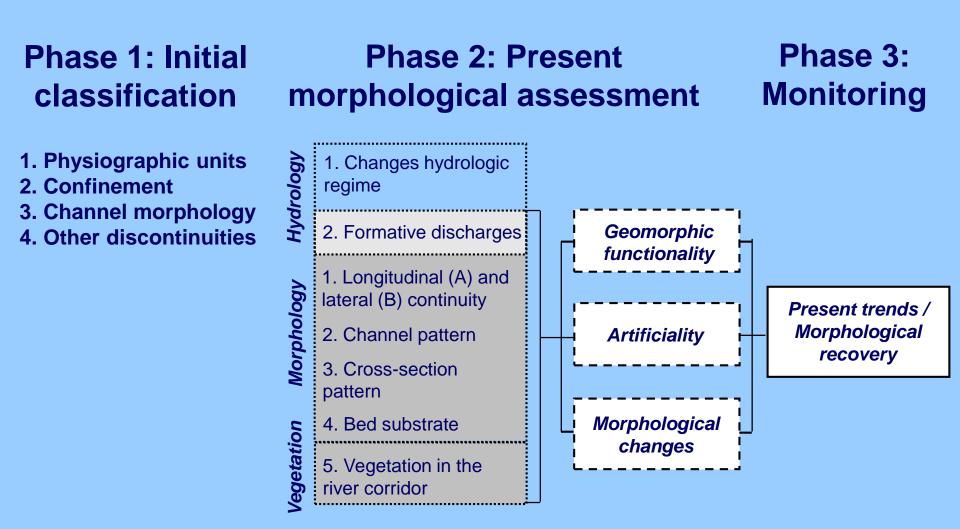
Hierarchical nested approach:

(1) Watershed

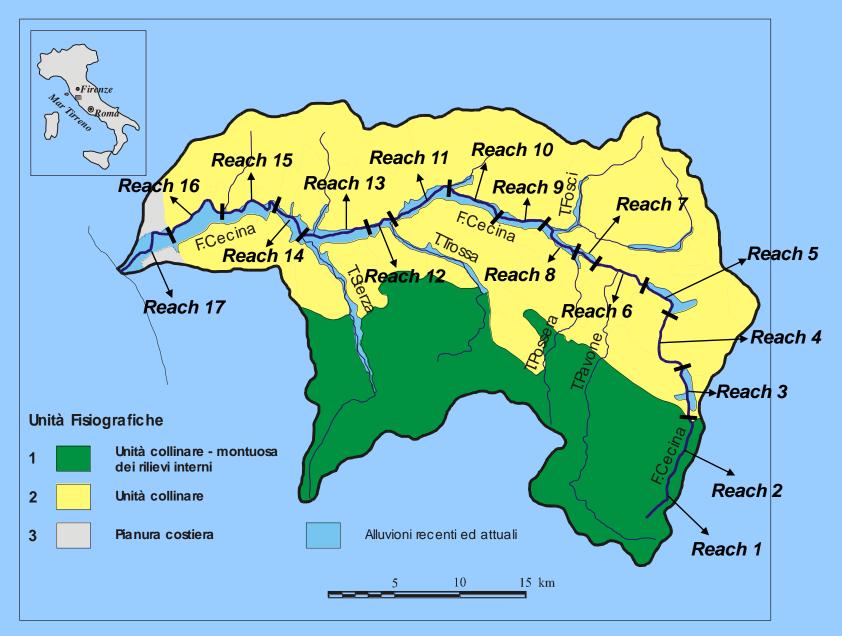

(2) Landscape (physiographic) unit

(3) **Reach**: basic unit for remote sensing

(4) **Site**: basic unit for field survey


(5) Sedimentary unit

Temporal scales



1954-55 (IGM GAI air flight): not a "reference state" but as a **measure of recent morphological alterations** (only for "large" rivers: channel width > 30 m)

General structure

Phase 1: Initial classification

Phase 2: Present morphological assessment

It includes three components:

- (1) Geomorphological functionality
- (2) Artificial elements ("artificiality")
- (3) Morphological changes

Geomorphological functionality

CODE	INDICATOR	RANGE OF APPLICATION	
	Geomorphological functioning		
Contin	uity		
F1	Longitudinal continuity in sediment flux and wood	All	
<i>F</i> 2	Presence of (modern) floodplain	Only NC	
<i>F</i> 3	Hillslopes – stream connection	Only C	
F4	Processes of bank retreat	Only NC	
F5	Presence of a potentially erodible corridor	Only NC	
Morpho	blogy		
Channe	el pattern		
<i>F</i> 6	Bed configuration – valley slope	Only C	
<i>F</i> 7	Forms and processes typical for the channel pattern	NC : all; C : only BR/W	
<i>F</i> 8	Presence of typical fluvial forms in the alluvial plain	Only lowland NC	
Cross-s	section configuration		
<i>F</i> 9	Variability of the cross-section	All	
Bed sul	bstrate		
F10	Structure of the channel bed	All	
F11	Presence of woody material	All	
Vegetation			
F12	Type of vegetation in the fluvial corridor	All	
F13	Width of functional formations in the fluvial corridor	All	
F14	Linear extension of functional formations along the banks	All	
	CONFINEMENT MORPHOLOGY	SIZE	

C: confined NC: semi- and non confined *ST*: single-thread *BR/W*: braided / wandering

P: small/medium (<30 m) *L*: large (>30 m)

Artificiality

CODE	INDICATOR	RANGE OF APPLICATION	
	Artificiality		
Alteration of longitudinal continuity upstream			
A1	Alteration of formative discharges	All	
A2	Interception of sediment transport	All	
Alterati	on of longitudinal continuity in the reach		
A3	Dams	All	
A4	Other alterations of formative discharges	All	
A5	Check dams	All	
A6	Weirs	All	
A7	Bridges, fords, culverts	All	
Alterati	ons of lateral continuity		
A8	Bank protections	All	
A9	Artificial levees	Only NC	
A10	Changes of river course	Only NC	
Alterations of the substrate			
A11	Bed revetment	All	
Interventions of removal			
A12	Sediment removal	All	
A13	Wood removal	All	
A14	Cut of vegetation	All	

CONFINEMENT

C: confined NC: semi- and non confined **MORPHOLOGY**

ST: single-thread BR/W: braided / wandering *SIZE P*: small/medium (<30 m) *L*: large (>30 m)

Morphological changes

CODE	INDICATOR	RANGE OF APPLICATION
Morphological changes		
V1	Changes in channel pattern	Only <i>L</i>
V2	Changes in channel width	Only <i>L</i>
V3	Bed-level changes	Only L

CONFINEMENT	MORPHOLOGY	SIZE
C: confined	ST : single-thread	P : small/medium (<30 m)
NC: semi- and non confined	BR/W: braided / wandering	<i>L</i> : large (>30 m)

- Two protocols of morphological assessment: **1.Confined channels**
- 2. Semi-confined / Non confined channels
- 'Reference conditions' (max score):
- Processes functioning ('dynamic equilibrium')
- No artificiality
- **No significant changes** of channel form, size, and bed elevation during the last decades (50-60 years)

Scoring and classification system

A1	Indicator	
Α	No alterations	0
В	Medium alteration	2
С	High alteration	5

Total deviation: *Stot* = *F*1+...+*F*14+*A*1+...+*A*14+*V*1+...*V*3 **Morphological Alteration Index**: *IAM*= *Stot* / *Smax* **Morphological Quality Index**: *IQM*=1-*IAM*

Classes	IQM
Very good	0.85 – 1.0
Good	0.7 – 0.85
Moderate	0.4 – 0.7
Poor	0.2 – 0.4
Very poor	0.0 – 0.2